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The Advanced Photon Source
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... the largest scientific user facility in the US, and

growing
Refereed publications by calendar year

200
CY99 CY00 CYO01 CY02 CY03 CY04 CYO05

XOR/BESSRC 12-BM, 1D
XOR/BESSRC 11

1200
1100
1000
900
800

NE-CAT 8.0
xons-n Mk

xon7-io | |48

p-caT 610, 10-0| | 4%

ono-car s w0, 0T/
3

XOR 4.10-C, 10D | WE

700 P anicne
600 P
500 W Other &
400 mJournals| &

100

12000

Protein stru

10000+

8000

ESRF: 674

6000

4000

2000

04

APS:

1997 1998 1999 2000 2001 2002 2003 2004 2005 2006

User visits by fiscal year

'Sector Key

SPring-8: 348

Chan CARS 1510 HP-CAT 14-8M, 1D-8, 1D-D
! \ . IMCA-CAT17-8 1D

X \
AL L £, Bl CAT 1810
e —— __SHC-CAT 19-BM, ID
T}, :h-"/ ' JXDR/PHE 20-8M, 1D
s ]
; < AS-CAT 21:1D-D, ID-£

10-8, I0-D

- NE-CAT 24-8M, ID-C, 1D-E

T - o
Enshermer Lelwn [ 7w 100 inwtatie

= m"""" L pokariznd.

e B Epmcol Moo Wisgier

é\._c.m@m_-m

P\

A xorum 33.8m 15
3
/X xomzum 340

ctures in 2005

SRS: 127
HASYLAB: 151

NSLS: 413

790

A
A rgQTr\.O]N':L] Ecumnv



APS users —who are they and what do they do?

Gov'’t. Industry
Laboratory

Materials

Academic Science

Physics

_ Chemistry
Biology
Polymers

Undergraduate Graduate Student Medical Apps.

Other

Post Doctoral

Faculty/
Professional Staff/

Reseacher
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Around the ring
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Some scientific highlights




How arsenic enters a water supply

B Arsenic contamination of ground water in
Bangladesh is largest environmental disaster
world has seen: ~57 million inhabitants are at
risk of drinking dangerous levels of arsenic from
wells

B Source of arsenic understood; critical question
is: How did arsenic migrate to water supply?

B Researchers using GSECARS 13-ID-C have
obtained data suggesting that arsenic is
released near the surface via redox cycling and
is later transported to well-depth

B Researchers propose that:

— ~15% of solid-phase arsenic is rapidly
desorbed, 60% is bound in sulfides
unreactive in the strongly reducing aquifer

— Arsenic released from the surface binds

Wea_kly to S!Ilcate minerals _that dominate (A) Dissolved arsenic peaks at 30-40-m depth in a Holocene aquifer at
aquifer sediments, are easily transported to the field site. They are not detected in a deeper Pleistocene aquifer. (B)
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well depth. Iron EXAFS linear-combination fitting of aquifer sediment samples
indicate that Fe mineralogy is constant with depth within the Holocene
B Study indicates that remediation requires aquifer, but Fe(lll) (hydr)oxides are not detected, despite the fact that
arsenic monitoring of soil environments above they have been suggested as a source of arsenic. (C) Arsenic is found
. ) ] in a host of oxidation states within the solid-phase. Arsenic-bearing
aquifers & developing better understanding of sulfide minerals, a previously unrecognized source of arsenic, are found
arsenic transport throughout the sediment profile, most commonly as 10-35-pum grains,

and may account for up to 60% of the total solid-phase arsenic.

Matthew L. Polizzotto et al., Chem. Geol. 228, 97 (2006). DOI: 10.1016/j.chemgg
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A key step in repairing DNA double-strand breaks

Double-strand breaks in DNA can result from
external agents such as UV radiation or
mutagenic chemicals

Unrepaired, a single DNA double-strand
break can lead to cell death or cancer

So cells have evolved elaborate machinery
made of proteins to detect, repair DNA
lesions

Atomic-level understanding of how this DNA
repair machinery functions is important for
correcting malfunctioning DNA double-strand
break repair process

Mayo research team using SBC-CAT 19-1D
showed that a human protein essential for
repairing DNA double-strand breaks is
recruited to the sites of DNA damage by
direct interaction with histone H4, a protein
constituent of the DNA packaging structure
called chromatin

The atomic structure of the protein
53BP1 identified by Mayo
researchers. (Courtesy: Mayo
Clinic)

Maria Victoria Botuyan et al., Cell 127, 1361 (29 December 2006). -



An insulating breakthrough

B A new insulating material with the lowest
thermal conductivity ever measured for a fully
dense solid has been created at the
University of Oregon and tested at XOR/UNI
33-BM

B While not having immediate application, the
principles involved could lead to improved
iInsulation for a wide variety of uses

B Used a novel approach to synthesize various
thicknesses of tungsten diselenide, yielded a
random stacking of tungsten-diselenide
planes (WSe, ), possibly leading to a
localization of lattice vibrations

B Resulting synthesized material yielded
thermal conductivity 30 times smaller than
that for single-crystal WSe, and factor of six
smaller that minimum level predicted by
theoretical computations for the cross-plane
thin films used in the experiments

A

Argonne

TORY

False-color depiction of the x-ray
diffraction intensities for a 32.5 nm
thick WSe, film collected at 33-BM
using 18.5 keV photons collected by
the area detector in the vicinity of the
(1 0 3) and (1 0 5) reflections. The
vertical direction is normal to the
sample surface and the horizontal
direction is in the plane of the sample

Catalin Chiritescu et al., Science 315, 342 (Jasnuary 2007). DOI: 10.1126/scie -



Watching gels get the stress out

B Macroscopic flow properties of a wide assortment
of disordered soft materials (foams, concentrated
emulsions, colloidal suspensions) can change
dramatically from fluid-like to solid-like with subtle
changes in microscopic characteristics

B This behavior bears strong resemblance to liquid-
glass transition in molecular fluids

B Microscopic mechanisms of recovery from shear
in disordered soft solid materials studied and
compared to aging in glasses viaUniversity of
lllinois, and Florida State University have
combined

B Multispeckle x-ray photon correlation
spectroscopy at XOR and diffusing wave
spectroscopy studies on concentrated colloidal
gels subjected to strong shear combined

M Studies call into question connection between
aging in glasses and slow equilibration that
various disordered soft solids display

B Should motivate a rethinking of models that seek
to unify these phenomena

Cartoon of gels under shear

A B. Chung et al., “Microscopic Dynamics of Recovery in Sheared Depletion Gels”; Ph

Argonn e 228301 (2006).
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Looking into metallic glass

B Metallic glass is an amorphous
metal that does not crystallize
when cooled from liquid to solid

B Atomic-scale structure is highly
disordered, much like a liquid,
gives metallic glasses unique
properties of high strength and
elasticity that make them ideal for
a wide range of applications, incl.
military hardware, spacecraft,
sporting equipment

B The ability to measure elastic
strain in glasses thought to be
limited by material's structural
randomness, difficulties in
collecting and analyzing data

B Researchers used XOR 1-ID to
measure elastic strain on a bulk
amorphous metallic alloy

B Study shows that elastic strain in
metallic glass can be measured
accurately with high-energy x-ray
scattering

Argonne

NATIONAL LABORATORY

T.C. Hufnagel et al., Phys. Rev. B 73, 064204 (2006). DOI: 10.1103/PhysRev

Change in x-ray scattering between loading and
unloading for a specimen tested in pure shear.
The distortion of the scattering rings reflects the
principal strains (which are oriented approximately

+ 45°from vertical)




Beneath the surface of high-speed industrial sprays

B “Seeing”’ beneath the surface of a jet
from ubiquitous high-speed industrial

) . : X uf 1 0
paint sprayer can yield important new __ —

Liquid Orifice Coaxial Air Orifice
— Liquid Volume Fraction

information needed to optimize the
sprayers themselves

B Researchers and engineers from
Argonne and lllinois Tool Works (ITW),
Inc. (Glenview, IL) using XOR 7-ID
beamline have captured first images of
complex and transient multiphase
spray flow just millimeters from a high-

Three-dimensional rendering of air-assisted

Speed industrial spray nozzle coaxial spray in near-nozzle region with an air

. . . . pressure of 137 kPa (corresponding to a Weber

B First-ever visualization of near-nozzle number of 380). False color intensity represents
high-speed coaxial flows can be used liquid volume fraction, which was quantified for

. .. first time with the x-ray phase-contrast imaging.
to develop and validate liquid breakup

models and is indispensable for
understanding downstream spray
formation

A Y. J. Wang et al., “Quantitative x-ray phase-contrast imaging of air-assisted water sprays A
Argonne
NATIONAL LABORATORY




The Linac Coherent Light Source (at ANL)

B A matrixed partnership - Stanford Linear Accelerator Center and ANL are
building the world’s first x-ray free electron laser

— ANL experts design and produce 130 meters of undulator systems
(33+ spares) for installation in new underground tunnel at SLAC

— ANL (APS) undulator system TPC ~$45M
— FY 06 & 07 - Undulator system construction
— FY 08 - Installation, commissioning, and 1st light




Center for Nanoscale Materials (CNM)

Nanoprobe finishing
construction

at 26-1D will be
jointly operated by
CNM and APS

Aiming for a 10-nm-resolution x-ray

- IERF |
microscope L




IPNS Instrument Suite

Inelastic Scattering
Direct geometry - HRMECS, LRMECS
Inverse geometry - QENS, CHEX

* New instrument

"H" moderator
(decoupled S-CHy)

x12*
CHEX (CORELLI)

x2 HRMECS
—— «— GPPD X6

x25 QENS

HIPD "F'" moderator

X4 GLAD —> (decoupled L-CHy)

x2* SCD-> SASI (MISANS) «3

N POSY I

X3* ~7
3* SEPD \ POSY II "C" moderator

I RMECS SAND X6 (coupled S-CHy)
Diffraction
Powder diffraction - SEPD, GPPD, HIPD Large Scale Structures
Single crystal - SCD Small Angle Scattering - SAND, SASI
Liquids and Amorphous Materials - GLAD Reflectometry - POSY |, POSY 11
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Future development plans




Future for APS — an Energy Recovery LINAC?

A 4

110 years

B |maging is back at the forefront of x-ray science!

B Next generation sources offer full coherence which will revolutionize
X-ray imaging and related coherent applications

B What is happening in x-ray imaging today at APS and elsewhere?
B Plans to develop ERL sources




ERL: Ideal source for imaging and nano-probes
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The Advanced Photon Source has been operating for 11years,

and a major upgrade is expected in the next decade

U.S. Department of Energy

Mear-Term

Mid-Term

Far-Term

Priority Program

1

2

Tie for
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Tie for
7

12
13

Tia for
14

Tie fot

Tie for

2

Tie for

3

FES
ASCR

HEP
BES
BER

NP
BER

NP
ASCR
ASCR
BES

HEP
HEP

Faality
ITER
UltraScale Scientific Computing Capability
Joint Dark Energy Mission
Linac Coherent Light Source
Prolein Production and Tags
Rare Isolope Accelerator
Characlerization and Imaging
CEBAF Upgrade

ESnel Upgrade
NERSC Upgrade

Transmssion Elecron Achromatic Microscope

BTeV

Linear Collider

Analysis and Modeling of Cellular Syslems
SNS 2-4 MW Upgrade

SNS Second Targel Station
Whole Proleome Analysis

NPHEP Double Beta Decay Underground Deteclor

FES
NP

BER
BES
BES

ER

BES
HEP

BES
BES
NP

FES
BES
FES

Nexl-Slep Spherical Torus
RHIC Il

National Synchrotron Light Source Upgrade
Super Neutrino Beam

Advanced Lighl Source Upgrade
Advanced Pholon Source Upgrade

eRHIC

Fusion Energy Conbingency

HFIR Second Cold Source and Guide Hall
Inlegraled Beam Experiment

Priorty. Tie for 23

Advanced Photon Source (APS) Upgrade

The Facility: The Advanced Photon Source
(APS) upgrade willcreate a “super storage ring”
of electrons that will preatly enhance the bril-
liance of the factlity, increasing the power of the
deviee and enabling scientists to work on very
stuall sample crystals. Small samples are impor-
tant: many cusrent experiments ase limited by
the fact that the subject materials wil not grow

into lasge enough crystals for study.

Background: The APS at Argonne Nationl
],ahulumn'}' was commissioned in 1996, It cur-
rently provides the brightest s-tay beams avail
able in the Western Hemisphere for a wide
range of research from materials science to

structural biology. - The 1,104-meter circumfer-

TheAPS Uy eww\great\yenhancetheb\Ihanceandpowerolr facltylo  ence storage ing of the APS, which is hge
snable scienfsts tostudy very smal sample crystals—mpartntfornanostience  enouh to house a baseball park in its center,

fesearch.

Facilities for the
Future of Science

available from
http://www.science.doe.
gov/Sub/Facilities_for_fu
ture/20-Year-Outlook-
screen.pdf

produces, accelerates, and stores a beam of
subatomic paticles thar is the source of the x-ray beams that feed numerous
experimental stations. The APS will support more than 4000 users on

70 beamlines.

What's New: 'This eventual APS upgrade will replace and upgrade major
components of the aceclerator to further increase performance in the hard
xeray segton of the spectrum, most notably xeray photon correlation spectros-
copy, coherent imaging, inclastic scattering, and x-gav nanoprobe mictoscopes.
The upgrade will be necessary to keep the APS among the best of the hasd
x-tay facilites, and ensure that its performance and scientific output continue

t0 be ground-hreaking.

Applications: Using high-brillance x-ray beams from the APS, members

of the international sychrotron-sadiation rescarch community have achieved
major advances in basic and applied research in the fields of materials sience;
biological seience; physics; chemistey; environmental, geophysical, and planetary

science; archeology; and innovative wray instrumentation.



What is the fourth generation revolution in x-ray sources?
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What does an ERL offer?
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Substantially spatially-coherent
source

— It can put >100 times more flux
iInto a <10nm probe and improve
phase contrast compared with a
storage ring

— And deliver to many users

It offers pulses 100 times shorter or
less (in the sub-ps regime)

— Does not rival FEL for peak
brilliance

— But compatible with FEL
upgrade as well

Proposed and developed by Cornell

Natural upgrade path for storage ring
such as APS

— Can be done without
compromise or major disruption




Short pulses at APS in the shorter term
A million photons in a trillionth of a second at sector 7 in 2008

variable x-ray
pulse length

Scattering - area
Dispersive XAFS

laser




What does the future hold for IPNS?

M Instruments performing at highest capacity ever

— Enhancements for all major instruments completer w //,
over past 5+ years /

—World-class special environment capabilities,
reasonably well-integrated

— But, no funding for further improvements Acotiearor  SNCHROTRON
M Future operations
—Uncertain beyond FY08-09
M Desired outcomes
— Retain key personnel for the benefit of Argonne
* . beamline staff, accelerator expertise
» Transitions to APS - accelerator group moved Feb. 2007
— Preserve IPNS collaborative research heritage for APS and SNS

— Participate in enhancement of APS science and linkage between photon and
neutron user bases in US

4~ NEUTRON
SCATTERING
TARGET

= A R \

r ./ f\ k LRMECS
% GLAD

N e 5chsnﬂl:

LINE  yrmEcs

— Create Argonne Scattering and Imaging Institute (ASI?)
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— Become a driver for new discoveries through more, |/..... e .
effective use of scattering data - r

Year

— Become a leading innovator in scattering theory, simulation and
analysis, data visualization, and instrumentation design

— Become home of US community scattering data analysis
development through creation of large group of dedicated
scientists and programmers

— Create strong but flexible interfaces with major US facilities and
scatterlng research groups at DOE laboratories angduniyesisiieseo - 1.8 mpixels
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Getting beam time

A Advanced Photon Source

A U5, Department of Energy, Office of

Office of Basic Energy Sciences nation
Web-based

[ e e e PR PR Also for IPNS, CNM, EMC

Argonne Home > Advanced Photon Source >

0000

Apply for Beam Time
+« Hew User

« Current User SCATTERING

Guick O Techniqe  Beamine

Quick Overview of the APS
Visiting the APS Hard X-Ray Diffraction

Argonne Guest Housze

Argonne

MATIONAL LABORATORY
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XORUNI-33-1D-D , XOR/BESSRC-11-1D-D
General Diffraction AORMUNI-33-BM-C , XOR-2-BM-B
HKOR/BESSRC-12-BM-B , HP-CAT-16-1D-D

Ring Status
Current Schedule
Upcoming Schedule

High Pressure Multi-Anvil Press

GSECARS-13-BM-C.D , GSECARS-131D-C.D

Publications (LVP)
Meetings & Seminars - - -
High Presure Diamond Anvil Cell GSECARS-13-BM-C.D , XOR-3-ID-B.C.D,
Conferences & Workshop
SrEnees S EHEEIAEs (DAC) HP-CAT-16-ID-B . GSECARS-131D-C.D , 16D

APS Organization Charts

DHND-CAT-5-BM-D , XOR/BESSRC-11-ID-C |
APS Director's Office

High energy x-ray diffraction

Accelerator Systems Division
APS Engineering Support
Division

W_Raw Cricnces Mhivicinmn

A
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Inorganic crystallography

Magnetic x-ray scaftering

Micro - diffraction

XOR/BESSRC-11-10-B , MU-CAT-6-1D-D
DHND-CAT-5-1D

MU-CAT-6-ID-B.C | XOR-4D-C | MU-CAT-6-1D-D |
AOR-4-1D-D

GM/CA-CAT-23-1D-B , GM/CA-CAT-23-ID-D |
AOR/UNI-34-1D-C , ChemMatCARS-15-ID-B.C.D,
Bio-CAT-18-D-D* , HP-CAT-16-ID-B , XOR-2-ID-D ,
XOR-2-BM-B , GSECARS-13-1D-C.D , 16-1D




Career possibilities

B APS is expanding the # of beamline staff in the next few years

B ASI2 may be looking for staff if funded in theory/software development for
neutron and x-ray scattering

B The Center for Nansocale Materials is recruiting scientific staff




Questions?




Third generation sources like the Advanced Photon
Source have had broad impact on science

Inside a paint-spray

] ] Wang et. al. Appl. Phys. Lett. 89, 151913 (2006). New H2'02. alloy at high P-T
WSe2 - a material with lowest Mao et al., Science 314, 636 (2006).
due to deliberate random layer
stacking ™

Chiritescu et. al. Science, January 2007

The protein that gives avian

flu its virulence
Bornholdt et. al. Nature Struct. Mol.
Biol. 13, 559 (2006)

Individual atomic steps on orthoclase
Fenter et. al. Nat. Phys. 2, 700 (2006).

Argonne

NATIONAL LABORATORY




... and cater to large user demand

Refereed publications by calendar year
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The majority of our users are from academia

Gov’t. Industry

Engineering
Laboratory Other

Instrum.

Enviro.
Sclence

Materials

Science

Physics

: Chemistry
Biology
Polymers

Madical Apps.

Academic

Undergraduate Graduate Student
Other

Post Doctoral

Faculty/
Professional Staff/

Reseacher

and a significant fraction of their research support comes from NSF
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High-speed imaging of fuel and liquid sprays

Y. J. Wang, Kyoung-Su Im, K. Fezzaa, W. K. Lee, J.
Wang, P. Micheli, and C. Laub, “Quantitative x-ray Liquid Orifice  Coaxial Air Orifice
phase-contrast imaging of air-assisted water sprays &5
with high Weber numbers,” Appl. Phys. Lett. 89,
151913 (9 October 2006).

Left: Three-dimensional rendering of the air-
assisted coaxial spray in the near-nozzle region
of an industrial paint spray gun (lllinois Tool
Works, Inc.) with an air pressure of 137kPa. The
false color intensity represents the liquid volume
fraction, which was quantified for the first time
with the x-ray phase-contrast imaging. (Courtesy
of Francesco De Carlo of the APS.)
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STXM example - Defect engineering
for less-costly solar cells
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X-Ray fluorescence imaging of single bacterial cells

Kemner et al.
Fig. 1. False-color Science 306, 686 (2004).
- o micro-XRF maps of
= ;'1 b qualitative spatial dis-
S kP i ! ; 1.5[= Mi
2 R 3 tributions and concen- @ icrobe
S . , . ! 2 ¢ Phosphate
tration gradients of S « Acetate
P S CI elementsdjn and around = —-Cr(VI)
- _ planktonic P. fluores- 2 .. 1 1
A . St cens microbes har- S% I /
: : s AR 8 e < vested before (A) and s I /
g B ; _ | after (B) exposure to ®E05 I /
Mar e 3 - potassium dichromate .‘_E“ T jl
O S e W el R R [Cr(v1)] solution (1000 I
Cl K Ca Cr Fe Ni -y Ll ppm) for 6 hours. g 0 iz #-XANES
=
-20 -1 1 2
5 microns - Redox states Cr(lll) 0 sty o

A: planktonic bacterium cell before exposure to Cr
_ i _ . B: planktonic cell after exposure to 1000 ppm Cr(VI)

: _.Cr £9 N} ; C“{ Zn Isolated planktonic cell accumulates Cr, looses ‘typical’
S B b i ¥ cellular elements, and stains ‘dead’

W R W T e
iy . LR Surface adhered cell does not take up Cr, shows no change
P_Ca-Cr Fe NitCulZn in elemental content, and remains alive

P

Attachment of prokaryotic cells to surfaces modulates elemental content and

response to environmental challenges




APS science at the nanoscale

16-BM, 16-1D
15-iD

Fluorescence microscopy 2-ID-D
W Grazing incidence 1-BM

small-angle x-ray scattering 8-1D-E
12-1D
B Microdiffraction under high pressure  16-ID
16-BM
B Micro/nanodiffraction 2-BM
2-ID-D
8-ID-E
34-1D
B Nanoprobe 26-1D 26-1D
Il Photoemission electron microscopy 4-1D-C
B Scanning x-ray microscopy 2-1D-B
Bl Small-angle x-ray scattering 12-ID
15-1D
I Spectroscopy for 4-ID-C
nanomagnetism studies
B Surface and interface scattering 12-1D
33-ID
4-1D-C W Ultra-small-angle x-ray scattering 32-ID-B
B X-ray excited optical luminescence 4-ID-C
B X-ray reflectometry 1-BM  32-ID-B k

33-1D

2-BM, 2-1D-B, -D

1-BM
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Center for Nanoscale Materials (CNM)

Nanoprobe finishing
construction

at 26-1D will be
jointly operated by
CNM and APS

Aiming for a 10-nm-resolution x-ray

- IERF |
microscope L




X-rays complementary to other imaging techniques....

B X-ray sources better suited for studying large volume samples and doing
some averaging (scattering cross section is low relative to electrons,
radiation damage is comparable)

— Precision measurements of structure, lattice spacing and strain,
magnetization..

— Higher spectroscopic sensitivity to low concentration
® Or, in-situ experiments where penetration is needed
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Short pulses at APS
A million photons in a trillionth of a second at sector 7 in 2008

variable x-ray
pulse length

Scattering - area
Dispersive XAFS

laser




Fast dynamics: FeRh lattice-expansion phase transition

Motivation: Explore correlated magnetic and structural phase
transitions in a material of technological interest

Laser off

 Ultrafast laser induces magnetic
phase transition (~500 fs) and
anomalous lattice expansion

* Present measurements on
homogeneous thin films

» Material may have applications in
laser assisted recording:

L (Recip Latt Units of substrate)

Laser

Write
coils

0.2 0.4 0.6 0.8 1

delay (ns) GMR
element

'\
Arggnngng ' D. Walko et al




Phase contrast imaging hits Times Square last week...

i

PR Newswire
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APS has been allocating more towards beamline research

and operations

User Support
12%

Accelerator
Systems
36%

ID's and Front
Ends
8%

Beamlines
21%

Infrastructure

FY 2006 "=

Budget has grown, but
we also had to reallocate
resources internally

User Support
12%

ID's and Front
Ends
7%

Accelerator
Systems
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Beamlines

30% Infrastructure

and Support
23%

FY 2003




