MINING IN A MOBILE ENVIRONMENT, S. T. McRoskey, J. H. Notwell, N. V. Chawla*, C. Poellabauer*, University of Notre Dame, Department of Computer Science and Engineering, Notre Dame, IN 46556, cpoellab@cse.nd.edu

Wireless ad-hoc networks are increasingly being investigated for a variety of mobile computing applications, including sensor networks, mobile ad-hoc networks (MANETs), wireless mesh networks, robust communication among first responders, and social networking tools. In another area of computer science there is an increasing desire to perform real-time data mining. Currently, data mining largely takes place long after the data have been collected; performing these tasks in real-time requires using the limited resources available in the environments where data are collected. Processing large amounts of data on mobile and sensing devices is taxing on their processors, memory, and batteries. Therefore, the challenge is to (a) build a framework that robustly supports the efficient distribution of knowledge extraction tasks and (b) study and re-design data mining techniques to match the constraints and requirements of resource-constrained wireless environments.


The proposed solution, called Distributed PRocessing in Mobile Environments (DPRiME), represents an abstract framework and associated implementation for processing large data sets in a distributed wireless environment. DPRiME is based on Google’s MapReduce, which is a solution to process vast amounts of data on many commodity machines. A strict implementation of MapReduce in a mobile environment is not possible because it relies on a fully-connected network and shared storage space, i.e., features not found in wireless networks. Therefore, DPRiME specifically focuses on the challenges of knowledge extraction in mobile environments, including unreliable wireless communications, node mobility, node failure, packet loss, data partitioning, and automatic result collection.

A distributed knowledge extraction task is initiated when a user inputs a data set, a processing function, and any required processing parameters on a device, which becomes the master device. The master then pings its one-hop neighbors and waits for their responses. Available worker devices respond and the master partitions the data with respect to the number of workers, i.e., a task is then sent to each worker. A worker may decide to also ping its one-hop neighbors and delegate some of the processing task to its neighbors, thereby serving as their master. When a worker has completed its task (or collected all results from its workers), the results are sent back to the master. Like MapReduce, DPRiME incorporates a back-up functionality, i.e., each master maintains a list of tasks, through which it continually loops and assigns any unfinished tasks to idle workers until all tasks are completed.

Communication between devices is implemented using UDP, with several acknowledgement and retransmission features added to the framework on top of UDP. These features are essential to ensure robust communication in dynamic environments, without the overheads and connection-oriented communication imposed by TCP. In addition, to address the high cost of worker’s losing contact with their master, Dynamic Source Routing (DSR) is used as a simple means for workers to find a route back to their master.

Five data mining classifiers were implemented across this framework: decision trees, k-means, k-nearest neighbor, naive Bayes, and artificial neural networks. Ensembles were selected to perform the classifications in parallel for their ability to generate highly accurate classification results. Ensembles operate by splitting the data into many pieces and training a classifier on each piece. Each classifier is then used to classify test examples, with their majority vote used to determine the final classification.


Our preliminary results indicate DPRiME is highly effective for processing data-intensive tasks. Their classification performance was evaluated in three different scenarios: one master; one master and two one-hop workers; and one master, two one-hop workers, and four two-hop workers. Unsurprisingly, k-nearest neighbor took the longest and exhibited the greatest improvement when distributed across this framework. This is because, unlike the other classifiers, no model was created for classification. K-means, which took the least amount of time, performed worse when distributed across our framework because the additional communication costs outweighed the benefits of using multiple devices to process a task. Thus, DPRiME performs best for data intensive tasks, where communication overheads are only a small fraction of total time, allowing users with little knowledge of networking or distributed systems to harness the processing power of an entire network of single- and multi-hop nodes.

This work was supported by National Science Foundation Grant CNS-0754933.
