
EXPLOITING SIMD PARALLELISM IN THE
PRESENCE OF CONTROL FLOW

Jaewook Shin1, Jacqueline Chame2, and Mary W.

Hall2
1Mathematics and Computer Science Division,
Argonne National Laboratory, 9700 South Cass

Avenue, Argonne, IL 60439; 2University of
Southern California, Information Sciences Institute,
4676 Admiralty Way, Marina del Rey, CA 90292

INTRODUCTION

While parallelism can be categorized into multiple
levels, for the best performance it is important to
exploit parallelism at all levels, including single
instruction multiple data (SIMD) parallelism.
Control flow (e.g., if-statements) is a factor that
limits automatic vectorization by compiler. The
conventional technique for vectorization in the
presence of control flow has two problems. First,
the generated code is for the machines with support
for predicated execution; thus it is not suitable for
modern SIMD architectures. Second, all predicated
SIMD instructions have to be executed always,
sometimes slowing down the SIMD code with
respect to the scalar baseline that may bypass a
large portion of the code.
 We have developed a set of techniques that
resolved both problems. Our techniques can be
applied to arbitrarily complex control flow. Also,
the SIMD code generated by our techniques can be
executed efficiently on modern SIMD architectures
that do not support predicated execution, and will
not slow with respect to the scalar baseline under
simplified settings.

OVERVIEW OF OUR TECHNIQUES

The procedure comprises two distinct techniques:
vectorization in the presence of arbitrarily complex
control flow and insertion of branch instructions to
bypass SIMD instructions.
 Our vectorization technique for control
flow extends a new technique called superword-
level parallelization (SLP). First, SLP unrolls loops
to expose SIMD parallelism. Then we apply if-
conversion to remove control flow. Next we apply
SLP packing extended to pack predicated
instructions. We remove vector predicates by using
vector merge instructions and scalar predicates by
restoring control flow back.
 The code generated this way carries some
overhead. The instructions that may be bypassed by
a conditional branch in the scalar baseline have to

be executed always in the vectorized code. We
reduce this overhead by inserting branches on
superword condition codes (BOSCCs) that bypass
SIMD instructions. The BOSCCs can bypass even
other BOSCCs, creating nested control flow among
SIMD instructions.

EXPERIMENT

To evaluate the effectiveness of our techniques, we
implemented a vectorizing compiler and applied it
to a set of 14 kernels, shown in the x-axis of the
figure below. In the figure, we show the speedups
of three versions over the scalar baseline for each
benchmark. “Vectorization only” shows the
speedups when the kernels are vectorized without
using BOSCC instructions, “BOSCC” when the
single-level BOSCC instructions are inserted, and

“BOSCC nested” when the BOSCCs are nested.
 This experiment suggests that our
technique can be used to vectorize code in the
presence of complex control flow, as in logf, and
our technique for inserting BOSCCs can be
effective for many applications. The techniques
summarized in this abstract are described in detail
in three papers [1,2,3].

REFERENCES

1. J. Shin, M. Hall, J. Chame. Superword-Level

Parallelism in the Presence of Control Flow,
International Symposium on Code Generation and
Optimization(CGO), March 2005

2. J. Shin, M. Hall, J. Chame. Evaluating Compiler
Technology for Control-Flow Optimizations for
Multimedia Extension Architectures, 6th
Workshop on Media and Streaming Processors
(MSP6), December 5, 2004

3. J. Shin. Introducing Control Flow into Vectorized
Code, Parallel Architectures and Compilation
Techniques (PACT), September 15-19, 2007

http://www-unix.mcs.anl.gov/%7Ejaewook/papers/shinj_slp.pdf
http://www-unix.mcs.anl.gov/%7Ejaewook/papers/shinj_slp.pdf
http://www-unix.mcs.anl.gov/%7Ejaewook/papers/msp6-shin.pdf
http://www-unix.mcs.anl.gov/%7Ejaewook/papers/msp6-shin.pdf
http://www-unix.mcs.anl.gov/%7Ejaewook/papers/msp6-shin.pdf
http://www-unix.mcs.anl.gov/%7Ejaewook/papers/shin-nestboscc.pdf
http://www-unix.mcs.anl.gov/%7Ejaewook/papers/shin-nestboscc.pdf

